Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Pea DNA helicase 45 promotes salinity stress tolerance in IR64 rice with improved yield.

The helicases provide duplex unwinding function in an ATP-dependent manner and thereby play important role in almost all the nucleic acids transaction. Since stress reduces the protein synthesis by affecting the cellular gene expression machinery, so it is evident that molecules involved in nucleic acid processing including translation factors/helicases are likely to be affected. Earlier pea DNA helicase 45 (PDH45), a homolog of translation initiation factor 4A (eIF4A) was reported to play important role in salinity stress tolerance in tobacco and Bangladeshi rice variety Binnatoa. We report here the overexpression of PDH45 gene in the indica rice variety IR64, via Agrobacterium-mediated transformation. Molecular analysis of the transgenics revealed stable integration of the transgene in the T1 generation. Enhanced tolerance to salinity was observed in the plants transformed with PDH45 gene. Better physiological and yield performances including endogenous nutrient contents (N, P, K, Na) of the transgenics under salt treatment were observed as compared with wild type (WT), vector control and antisense transgenics. All these results indicated that the overexpression of PDH45 in the IR64 rice transgenics enable them to perform better with enhanced salinity stress tolerance and improved physiological traits. Based on the homology of PDH45 protein with eIF4A protein we suggest that it may act at the translational level to enhance or stabilize protein synthesis under stress conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app