Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chronic phosphodiesterase type 2 inhibition improves memory in the APPswe/PS1dE9 mouse model of Alzheimer's disease.

Neuropharmacology 2013 January
Alzheimer's disease (AD) is characterized by progressive cognitive deficits and synaptic dysfunction. Over the last decade phosphodiesterase inhibitors (PDEIs) have received increasing attention as putative cognition enhancers and have been suggested as a novel treatment strategy for AD. Given their ability to prevent hydrolysis of cAMP and/or cGMP, they can stimulate the cAMP/protein kinase A (PKA)/cAMP element-binding protein (CREB) and cGMP/PKG/CREB pathway to enhance synaptic transmission by increasing CREB phosphorylation (pCREB) and brain-derived neurotrophic factor (BDNF) transcription. Based on previous research, we hypothesized that chronic PDE2I treatment would improve AD-related cognitive deficits, by decreasing amyloid-β (Aβ) plaque load, enhancing pCREB and BDNF levels and increasing synaptic density in the hippocampus of 8-month-old APPswe/PS1dE9 mice. Results indicated that chronic PDE2I treatment could indeed improve memory performance in APPswe/PS1dE9 mice, without affecting anxiety, depressive-like behavior or hypothalamus-pituitary-adrenal axis regulation. However, no treatment effects were observed on Aβ plaque load, pCREB or BDNF concentrations, or presynaptic density in the hippocampus, suggesting that other signaling pathways and/or effector molecules might be responsible for its cognition-enhancing effects. Presynaptic density in the stratum lucidum of the CA3 subregion was significantly higher in APPswe/PS1dE9 mice compared to WT controls, possibly reflecting a compensatory mechanism. In conclusion, PDEs in general, and PDE2 specifically, could be considered as promising therapeutic targets for cognition enhancement in AD, although the underlying mechanism of action remains to be elucidated. This article is part of a Special Issue entitled 'Cognitive Enhancers'.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app