Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Photoacoustic-guided ultrasound therapy with a dual-mode ultrasound array.

Photoacoustics has recently been proposed as a potential method to guide and/or monitor therapy based on high-intensity focused ultrasound (HIFU). We experimentally demonstrate the creation of a HIFU lesion at the location of an optical absorber, by use of photoacoustic signals emitted by the absorber detected on a dual mode transducer array. To do so, a dedicated ultrasound array intended to both detect photoacoustic waves and emit HIFU with the same elements was used. Such a dual-mode array provides automatically coregistered reference frames for photoacoustic detection and HIFU emission, a highly desired feature for methods involving guidance or monitoring of HIFU by use of photoacoustics. The prototype is first characterized in terms of both photoacoustic and HIFU performances. The probe is then used to perform an idealized scenario of photoacoustic-guided therapy, where photoacoustic signals generated by an absorbing thread embedded in a piece of chicken breast are used to automatically refocus a HIFU beam with a time-reversal mirror and necrose the tissue at the location of the absorber.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app