Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

24-epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: a shotgun approach.

The objective of this study was to explore the response of 24-epibrassinolide to improve the biological yield of Ni-tolerant and Ni-sensitive varieties of Vigna radiata and also to test the propositions that 24-epibrassinolide induced up-regulation of antioxidant system protects the efficiency of V. radiata, grown under Ni-stress. Surface sterilized seeds of var. T-44 (Ni-tolerant) and PDM-139 (Ni-sensitive) were soaked in DDW (control), 10(-10), 10(-8), or 10(-6) M of 24-epibrassinolide for 8 h (shotgun approach). These treated seeds were then inoculated with specific Rhizobium grown in sandy loam soil supplemented with different levels of Ni 0, 50, 100, or 150 mg Ni kg(-1) of soil and were allowed to grow for 45-days. At this stage of growth, plants were sampled to assess the various growths and nodule related traits as well as selected biochemical characteristics. The remaining plants were allowed to grow to maturity to study the yield characteristics. The results indicated that plant-fresh and dry mass, number of nodules, their fresh and dry mass, leghemoglobin content, nitrogen and carbohydrate content in the nodules, leaf chlorophyll content, activities of nitrate reductase and carbonic anhydrase decreased proportionately with the increasing concentrations of soil nickel. However, the application of 24-epibrassinolide as shotgun approach (pre-sowing seed soaking) to the nickel-stressed or non-stressed plants improved growth, nodulation and enhanced the activity of various antioxidant enzymes (viz. catalase, peroxidase and superoxide dismutase) and also the content of proline. The up-regulation of antioxidant enzymes as well as proline (osmolyte) triggered by 24-epibrassinolide could have conferred tolerance to the Ni-stressed plants resulting in improved growth, nodulation and yield attributes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app