Journal Article
Review
Add like
Add dislike
Add to saved papers

Exercise training, genetics and type 2 diabetes-related phenotypes.

Acta Physiologica 2012 August
Type 2 diabetes mellitus (T2DM) is at virtually pandemic levels world-wide. Diabetes has been referred to as 'a geneticist's nightmare'. However, dramatic advances in our understanding of the genetics of T2DM have occurred in the past 5 years. While endurance exercise training and increased habitual physical activity levels have consistently been shown to improve or be associated with improved T2DM-related phenotypes, there is substantial interindividual variation in these responses. There is some evidence that T2DM-related phenotype responses to exercise training are heritable, indicating that they might have a genetic basis. Genome-wide linkage studies have not identified specific chromosomal loci that could account for these differences, and no genome-wide association studies have been performed relative to T2DM-related phenotype responses to exercise training. From candidate gene studies, there are relatively strong and replicated data supporting a role for the PPARγ Pro12Ala variant in the interindividual differences in T2DM-related phenotype responses to training. This is a potentially important candidate locus because it affects T2DM susceptibility, has high biological plausibility and is the target for the primary pharmaceutical method for treating T2DM. Is it time to conduct a hypothesis-driven large-scale exercise training intervention trial based on PPARγ Pro12Ala genotype with T2DM-related phenotypes as the primary outcome measures, while also assessing potential mechanistic changes in skeletal muscle and adipose tissue? Or would it be more appropriate to propose a smaller trial to address the specific skeletal muscle and adipose tissue mechanisms affected by the interaction between the PPARγ Pro12Ala genotype and exercise training?

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app