Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via Dynamin-like protein.

Mutations in Leucine-rich repeat kinase 2 (LRRK2) are the leading causes of genetically inherited Parkinson's disease (PD) identified so far. The underlying mechanism whereby missense alterations in LRRK2 initiate neurodegeneration remains largely unclear. Mitochondrial dysfunction has been recognized to contribute to the pathogenesis of both sporadic and familial PD. The pathogenic gain-of-function mutant form of LRRK2, LRRK2 G2019S, is associated with elevated kinase activity and PD. Here we show that LRRK2 G2019S can cause defects in the morphology and dynamics of mitochondria in cortical neurons. In neurons, endogenous LRRK2 and the mitochondrial fission factor Dynamin like protein 1 (DLP1) interact with and partially co-localize with each other. DLP1 plays an essential role in LRRK2-induced mitochondrial fission. In support of this, expression of LRRK2 leads to the translocation of DLP1 from the cytosol to the mitochondria and knockdown of DLP1 expression inhibits LRRK2-induced mitochondrial fission. In addition, co-expression of LRRK2 and DLP1 induces mitochondrial clearance. Furthermore, we have found that expression of LRRK2 leads to increased reactive oxygen species levels in cells. Taken together, our results provide insights into the pathobiology of LRRK2 and suggest that LRRK2 G2019S may induce neuronal dysfunction or cell death by disturbing normal mitochondrial fission/fusion dynamics and function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app