Add like
Add dislike
Add to saved papers

Mucosal permeability is an intrinsic factor in susceptibility to dextran sulfate sodium-induced colitis in rats.

We investigated differences in the pathogenesis of dextran sulfate sodium (DSS)-induced colitis between two inbred rat strains, Wistar King A Hokkaido (WKAH) and Dark Agouti (DA) rats, to determine the intrinsic factors responsible for the development of colitis. DSS exposure exacerbated the clinical symptoms such as body weight loss, stool consistency and rectal bleeding in DA rats rather than that in WKAH rats. Additionally, the average survival was shorter in DA rats than in WKAH rats. The expression levels of tumor necrosis factor-α, interleukin (IL)-12 p35 and IL-23 p19 increased prominently in the DA rats that were administered DSS, accompanied by severe infiltration of leukocytes into the colon. We also found that colonic permeability was greater in the DA rats than in the WKAH rats. In Ussing chambers, exposure of the isolated colon tissue to DSS enhanced the colonic permeability of both strains. Immunoblot analysis revealed that the expression levels of tight junction (TJ) proteins were modulated during DSS administration. Higher expression levels of claudin-4 and junctional adhesion molecule-A proteins were observed in DA rats than in WKAH rats, even in intact conditions. These results indicated that the expression pattern of TJ proteins determines the colonic permeability of the rats. In conclusion, the intrinsic colonic permeability is one of critical factors responsible for the susceptibility of rats to colitis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app