Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Beneficial metabolic effects of 2',3',5'-tri-acetyl-N6- (3-hydroxylaniline) adenosine in the liver and plasma of hyperlipidemic hamsters.

BACKGROUND: Pharmaceutical research of hyperlipidemia has been commonly pursued using traditional approaches. However, unbiased metabonomics attempts to explore the metabolic signature of hyperlipidemia in a high-throughput manner to understand pathophysiology of the disease process.

METHODOLOGY/PRINCIPAL FINDINGS: As a new way, we performed (1)H NMR-based metabonomics to evaluate the beneficial effects of 2',3',5'-tri-acetyl-N(6)- (3-hydroxylaniline) adenosine (WS070117) on plasma and liver from hyperlipidemic Syrian golden hamsters. Both plasma and liver profiles provided a clearer distinction between the control and hyperlipidemic hamsters. Compared to control animals, hyperlipidemic hamsters showed a higher content of lipids (triglyceride and cholesterol), lactate and alanine together with a lower content of choline-containing compounds (e.g., phosphocholine, phosphatidylcholine, and glycerophosphocholine) and betaine. As a result, metabonomics-based findings such as the PCA and OPLS-DA plotting of metabolic state and analysis of potential biomarkers in plasma and liver correlated well to the assessment of biochemical assays, Oil Red O staining and in vivo ultrasonographic imaging suggesting that WS070117 was able to regulate lipid content and displayed more beneficial effects on plasma and liver than simvastatin.

CONCLUSIONS/SIGNIFICANCE: This work demonstrates the promise of applying (1)H NMR metabonomics to evaluate the beneficial effects of WS070117 which may be a good drug candidate for hyperlipidemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app