Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Different multiple regeneration capacities of motor and sensory axons in peripheral nerve.

After peripheral nerve injury, axons often project sprouts from the node of Ranvier proximal to the damage site. It is well known that one parent axon can sprout and maintain several regenerating axons. If enough endoneurial tubes in the distal stump are present for the regenerating axons to grow along, then the number of mature myelinated nerve fibers in the distal stump will be greater than the number in the proximal stump. "Multiple regeneration" is used to describe this phenomenon in the peripheral nerve. According to previous studies, a prominent nerve containing many axons can be repaired by the multiple regenerating axons sprouting from another nerve that contains fewer axons. Most peripheral nerves contain a mixture of myelinated motor and sensory axons as well as unmyelinated sensory and autonomic axons. In this study, a multiple regeneration animal model was developed by bridging the proximal common peroneal nerve with the distal common peroneal nerve and the tibial nerve. Differences in the multiple regeneration ratio of motor and sensory nerves were evaluated using histomorphometry one month after ablating the dorsal root ganglion (DRGs) and ventral roots, respectively. The results suggest that the motor nerves have a significantly larger multiple regeneration ratio than the sensory nerves at two different time points.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app