Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hepatocyte growth factor reduces cardiac fibrosis by inhibiting endothelial-mesenchymal transition.

Hypertension 2012 May
The purpose of this study was to investigate the effect of hepatocyte growth factor (HGF) on the pathogenesis of cardiac fibrosis induced by pressure overload in mice. Although cardiac fibrosis is attributed to excess pathological deposition of extracellular matrix components, the mechanism remains unclear. Recent reports revealed that α-smooth muscle actin-expressing myofibroblasts are primarily responsible for fibrosis. It is believed that myofibroblasts are differentiated from resident fibroblasts, whereas the transformation of vascular endothelial cells into myofibroblasts, known as endothelial-mesenchymal transition, has been suggested to be intimately associated with perivascular fibrosis. Thus, we hypothesized that HGF prevents cardiac fibrosis by blocking these pathways. We analyzed the pressure-overloaded HGF-transgenic mouse model made by transverse aortic constriction. Human coronary artery endothelial cells and human cardiac fibroblasts were examined in vitro after being treated with transforming growth factor-β1 or angiotensin II with or without HGF. The amount of cardiac fibrosis significantly decreased in pressure-overloaded HGF-transgenic mice compared with pressure-overloaded nontransgenic controls, particularly in the perivascular region. This was accompanied by a reduction in the expression levels of fibrosis-related genes and by significant preservation of echocardiographic measurements of cardiac function in the HGF-transgenic mice (P<0.05). The survival rate 2 months after transverse aortic constriction was higher by 45% (P<0.05). HGF inhibited the differentiation of human coronary artery endothelial cells into myofibroblasts induced by transforming growth factor-β1 and the phenotypic conversion of human cardiac fibroblasts into myofibroblasts. We conclude that HGF reduced cardiac fibrosis by inhibiting endothelial-mesenchymal transition and the transformation of fibroblasts into myofibroblasts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app