Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Gamete formation via meiotic nuclear restitution generates fertile amphiploid F1 (oat×maize) plants.

Hybrid (oat×maize) zygotes developed into euhaploid plants with complete oat chromosome complements without maize chromosomes and into aneuhaploid plants with complete oat chromosome complements and different numbers of retained individual maize chromosomes. The elimination of maize chromosomes in the hybrid embryo is caused by uniparental genome loss during early steps of embryogenesis. Some of these haploid plants set seed in up to 50% of their self-pollinated spikelets. The high fertility was found to be mainly caused by formation of numerically unreduced female and male gametes (nunreduced=3x+0…3=21…24 chromosomes). Gamete formation involves meiotic nuclear restitution. The restitution process is caused by an alternative type of meiosis. It follows the model of levigatum-type semi-heterotypic divisions, but with a formation of the nuclear membrane at the transition from telophase I to interkinesis, which resembles the model of pygaera-type pseudo-homotypic divisions. We propose the name haploid meiotic restitution for this particular process combination. We discuss the use and implications of the specific process of gamete formation in F1 (oat×maize) plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app