Add like
Add dislike
Add to saved papers

Analytical solutions and validation of electric field and dielectrophoretic force in a bio-microfluidic channel.

Electrophoresis 2012 Februrary
In a microbiological device, cell or particle manipulation and characterization require the use of electric field on different electrodes in several configurations and shapes. To efficiently design microelectrodes within a microfluidic channel for dielectrophoresis focusing, manipulation and characterization of cells, the designer will seek the exact distribution of the electric potential, electric field and hence dielectrophoresis force exerted on the cell within the microdevice. In this paper we describe the approach attaining the analytical solution of the dielectrophoretic force expression within a microchannel with parallel facing same size electrodes present on the two faces of channel substrates, with opposite voltages on the pair electrodes. Simple Fourier series mathematical expressions are derived for electric potential, electric field and dielectric force between two distant finite-size electrodes. Excellent agreement is found by comparing the analytical results calculated using MATLAB™ with numerical ones obtained by Comsol. This analytical result can help the designer to perform simple design parametric analysis. Bio-microdevices are also designed and fabricated to illustrate the theoretical solution results with the experimental data. Experiments with red blood cells show the dielectrophoretic force contour plots of the analytical data matched to the experimental results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app