Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Metabotropic glutamate receptor 5 mediates phosphorylation of vascular endothelial cadherin and nuclear localization of β-catenin in response to homocysteine.

Elevated plasma homocysteine (Hcy) is an independent risk factor for vascular disease and stroke in part by causing generalized endothelial dysfunction. A receptor that is sensitive to Hcy and its intracellular signaling systems has not been identified. β-catenin is a pleiotropic regulator of transcription and cell function. Using a brain microvascular endothelial cell line (bEnd.3), we tested the hypothesis that Hcy causes receptor-dependent nuclear translocation of β-catenin. Hcy increased phosphorylation of Y731 on vascular endothelial cadherin (VE-cadherin), a site involved in coupling β-catenin to VE-cadherin. This was blocked by inhibition of either metabotropic glutamate receptor 5 (mGluR5) or ionotropic glutamate receptor (NMDAr) and by shRNA knockdown of mGluR5. Expression of these receptors was confirmed by flow cytometry, immunohistochemistry, and western blotting. Directed pharmacology with specific agonists elucidated a signaling cascade where Hcy activates mGluR5 which activates NMDAr with subsequent PKC activation and uncoupling of the VE-cadherin/β-catenin complex. Moreover, Hcy caused a shift in localization of β-catenin from membrane-bound VE-cadherin to the cell nucleus, where it bound DNA, including a regulatory region of the gene for claudin-5, leading to reduced expression of claudin-5. Nuclear localization, DNA binding of β-catenin, and reduced claudin-5 expression were blocked by inhibition of mGluR5. Knockdown of mGluR5 expression with shRNA also rescued claudin-5 expression from the effects of Hcy treatment. These data uniquely identify mGluR5 as a master switch that drives β-catenin nuclear localization in vascular endothelium and regulates cell-cell coupling in response to elevated Hcy levels. These studies dissect a pharmacological opportunity for developing new therapeutic strategies in HHcy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app