Ohioensin F suppresses TNF-α-induced adhesion molecule expression by inactivation of the MAPK, Akt and NF-κB pathways in vascular smooth muscle cells

Hye-Eun Byeon, Sung Hee Um, Joung Han Yim, Hong Kum Lee, Suhkneung Pyo
Life Sciences 2012 March 10, 90 (11-12): 396-406

AIMS: The expression of cell adhesion molecules on vascular smooth muscle cells is central to leukocyte recruitment and progression of atherosclerotic disease. Ohioensin F, a chemical compound of the Antarctic moss Polyerichastrum alpinum, exhibited inhibitory activity against protein tyrosine phosphatase 1B and antioxidant activity. However, published scientific information regarding other biological activities and pharmacological function of ohioensin F is scarce. In the present study, we aimed to examine the in vitro effects of ohioensin F on the ability to suppress TNF-α-induced adhesion molecule expression in vascular smooth muscle cells (VSMCs).

MAIN METHODS: The inhibitory effect of ohioensin F on TNF-α-induced upregulation in expression of adhesion molecules was investigated by enzyme-linked immunosorbent assay, cell adhesion assay, RT-PCR, western blot analysis, immunofluorescence, and transfection and reporter assay, respectively.

KEY FINDINGS: Pretreatment of VSMCs with ohioensin F at nontoxic concentrations of 0.1-10 μg/ml dose-dependently inhibited TNF-α-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). In addition, ohioensin F suppressed adhesion of THP-1 monocytes to TNF-α-stimulated VSMCs. Ohioensin F reduced TNF-α-induced production of intracellular reactive oxygen species (ROS) and phosphorylation of p38, ERK, JNK and Akt. Finally, ohioensin F inhibited TNF-α-induced CAM mRNA expression and NK-κB translocation.

SIGNIFICANCE: These results suggest a new mechanism of ohioensin F's anti-inflammatory action, owing to the negative regulation of TNF-α-induced adhesion molecule expression, monocyte adhesion and ROS production in vascular smooth muscle cells. Our finding also supports ohioensin F as a potential pharmacological, anti-inflammatory molecule that has a protective effect on the atherosclerotic lesion.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"