Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MicroRNA-122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting Wnt/β-catenin pathway.

AIMS: To validate whether the anti-cancer effect of microRNA-122 (miR-122) on hepatocellular carcinoma (HCC) is mediated through regulating Wnt/β-catenin signalling pathways.

METHODS: The expression levels of miR-122 in HCC tissues and varied hepatoma cells were quantified by real-time PCR. MiR-122 agomir was transfected into HepG2, Hep3B cells to over-express miR-122. The effect of over-expression miR-122 on proliferation and apoptosis of HepG2 and Hep3B cells was evaluated using CCK-8 kit and flow cytometer respectively. The 3'-UTR segments of Wnt1 containing the miR-122 binding sites were amplified by PCR and the luciferase activity in the transfected cells was assayed. Wnt1 mRNA level was quantified using RT-PCR. Protein levels of Wnt1, β-catenin and TCF-4 were detected using Western blotting.

RESULTS: In comparison with the expression level of miR-122 in para-cancerous tissues or Chang liver cell, the expression level in HCC tissues or varied hepatoma cells was significantly decreased (P < 0.05). Over-expression of miR-122 significantly inhibited the proliferation (P < 0.05), and promoted the apoptosis of HepG2 and Hep3B cells. Over-expressed miR-122 down-regulated the protein levels of Wnt1, β-catenin and TCF-4 (P < 0.05). MiR-122 suppressed the luciferase activity of the pmiR-Wnt1-wt by approximately 50% compared with the negative control, while mutation or removal of the miR-122 binding site using siRNA or mir-122 inhibitor blocked the suppressive effect (P < 0.05).

CONCLUSIONS: MiR-122 expression is down-regulated in human HCC. Over-expression of miR-122 inhibits HCC cell growth and promotes the cell apoptosis by affecting Wnt/β-catenin-TCF signalling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app