Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Thapsigargin down-regulates protein levels of GRP78/BiP in INS-1E cells.

Pancreatic β-cells have a well-developed endoplasmic reticulum (ER) and express large amounts of chaperones and protein disulfide isomerases (PDI) to meet the high demand for synthesis of proteins. We have observed an unexpected decrease in chaperone protein level in the β-cell model INS-1E after exposure to the ER stress inducing agent thapsigargin. As these cells are a commonly used model for primary β-cells and has been shown to be vulnerable to ER stress, we hypothesize these cells are incapable of mounting a chaperone defense upon activation of ER stress. To investigate the chaperone expression during an ER stress response, induced by thapsigargin in INS-1E cells, we used quantitative mass spectrometry based proteomics. The results displayed a decrease of GRP78/BiP, PDIA3 and PDIA6. Decrease of GRP78/BiP was verified by Western blot and occurred in parallel with enhanced levels of p-eIF2α and CHOP. In contrast to INS-1E cells, GRP78/BiP was not decreased in MIN6 cell or rat and mouse islets after thapsigargin exposure. Investigation of the decreased protein levels of GRP78/BiP indicates that this is not a consequence of reduced mRNA expression. Rather the reduction results from the combined effect of reduced protein synthesis and enhanced proteosomal degradation and possibly also degradation via autophagy. Induction of ER stress with thapsigargin leads to lower protein levels of GRP78/BiP, PDIA3 and PDIA6 in INS-1E cells which may contribute to the susceptibility of ER stress in this β-cell model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app