Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The active (ADHa) and inactive (ADHi) forms of the PQQ-alcohol dehydrogenase from Gluconacetobacter diazotrophicus differ in their respective oligomeric structures and redox state of their corresponding prosthetic groups.

The membrane-bound alcohol dehydrogenase of Gluconacetobacter diazotrophicus contains one pyrroloquinoline quinone moiety (PQQ), one [2Fe-2S] cluster, and four c-type cytochromes. Here, we describe a novel and inactive enzyme. ADHi, similarly to ADHa, is a heterodimer of 72- and 44-kDa subunits and contains the expected prosthetic groups. However, ADHa showed a threefold molecular mass as compared to ADHi. Noteworthy, the PQQ, the [2Fe-2S] and most of the cytochromes in purified ADHi is in the oxidized form, contrasting with ADHa where the PQQ-semiquinone is detected and the [2Fe-2S] cluster as well as the cytochromes c remained fully reduced after purification. Reduction kinetics of the ferricyanide-oxidized enzymes showed that while ADHa was brought back by ethanol to its full reduction state, in ADHi, only one-quarter of the total heme c was reduced. The dithionite-reduced ADHi was largely oxidized by ubiquinone-2, thus indicating that intramolecular electron transfer is not impaired in ADHi. The acidic pH of the medium might be deleterious for the membrane-bound ADH by causing conformational changes leading to changes in the relative orientation of heme groups and shift of corresponding redox potential to higher values. This would hamper electron transfer resulting in the low activity observed in ADHi.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app