Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Prenatal SSRI exposure alters neonatal corticosteroid binding globulin, infant cortisol levels, and emerging HPA function.

BACKGROUND: Serotonin influences the development of the hypothalamic-pituitary-adrenal (HPA) system; therefore prenatal exposure to selective serotonin reuptake inhibitor antidepressants (SSRIs) may alter HPA axis development and function. To address this, prenatal exposure to SSRIs and maternal mood were examined in relation to neonatal and infant levels of cortisol and its binding protein, corticosteroid-binding globulin (CBG).

METHODS: Serum cortisol and CBG levels were assayed from SSRI-exposed and non-exposed mothers and their neonates at delivery. Maternal mood symptoms were documented at 36 weeks gestation. To determine the long-term implications of changes in CBG, levels of salivary cortisol were assessed in infants at 3 months of age.

RESULTS: Prenatal SSRI exposure significantly increased serum CBG levels in neonates after vaginal delivery (p ≤ 0.038), even when controlling for maternal depression. Neonatal serum cortisol levels did not vary with SSRI exposure or antenatal maternal mood, but were significantly higher following vaginal delivery (p ≤ 0.003). Neonatal serum CBG levels were associated with infant salivary levels of evening cortisol (p ≤ 0.051). In SSRI-exposed infants, increased levels of neonatal CBG predicted a smaller diurnal change in infant salivary cortisol (p ≤ 0.028), regardless of maternal depression.

CONCLUSIONS: Prenatal SSRI exposure affects the developing HPA system by altering serum CBG levels in neonates and infant salivary cortisol levels. Further research is warranted on the long-term functional implications of the effect of prenatal SSRI exposure on fetal hepatic CBG gene expression and the developing HPA system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app