Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification and comparative analysis of the Eriocheir sinensis microRNA transcriptome response to Spiroplasma eriocheiris infection using a deep sequencing approach.

The Chinese mitten crab Eriocheir sinensis is one of the most important freshwater aquaculture crustacean species in China. MicroRNAs (miRNAs) are small non-coding RNAs that are important effectors in the intricate host-pathogen interaction network. To increase the repertoire of miRNAs characterized in crustaceans and to examine the relationship between host miRNA expression and pathogen infection, we used the Illumina/Solexa deep sequencing technology to sequence two small RNA libraries prepared from haemocytes of E. sinensis under normal conditions and during infection with Spiroplasma eriocheiris. The high-throughput sequencing resulted in approximately 30,975,151 and 30,826,277 raw reads corresponding to 12,077,088 and 16,271,545 high-quality mappable reads for the normal and infected haemocyte samples, respectively. Bioinformatic analyses identified 735 unique miRNAs, including 36 that are conserved in crustaceans, 134 that are novel to crabs but are present in other arthropods (PN-type), and 565 that are completely new (PC-type). Two hundred twenty-eight unique miRNAs displayed significant differential expression between the normal and infected haemocyte samples (p < 0.0001). Of these, 133 (58%) were significantly up-regulated and 95 (42%) were significantly down-regulated upon challenge with S. eriocheiris. Real-time quantitative PCR (RT-qPCR) experiments were preformed for 10 miRNAs of the two samples, and agreement was found between the sequencing and RT-qPCR data. To our knowledge, this is the first report of comprehensive identification of E. sinensis miRNAs and of expression analysis of E. sinensis miRNAs after exposure to S. eriocheiris. Many miRNAs were differentially regulated when exposed to the pathogen, and these findings support the hypothesis that certain miRNAs might be essential in host-pathogen interactions. Our results suggest that elucidation of the molecular mechanisms responsible for miRNA regulation of the host's innate immune system should help with the development of new control strategies to prevent or treat S. eriocheiris infections in crustaceans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app