Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Hydrolysis potential of recombinant human skin and kidney prolidase against diisopropylfluorophosphate and sarin by in vitro analysis.

Human prolidase (PROL), which has structural homology to bacterial organophosphate acid anhydrolase that hydrolyze organophosphates and nerve agents has been proposed recently as a potential catalytic bioscavenger. To develop PROL as a catalytic bioscavenger, we evaluated the in vitro hydrolysis efficiency of purified recombinant human PROL against organophosphates and nerve agents. Human liver PROL was purified by chromatographic procedures, whereas recombinant human skin and kidney PROL was expressed in Trichoplusia ni larvae, affinity purified and analyzed by gel electrophoresis. The catalytic efficiency of PROL against diisopropylfluorophosphate (DFP) and nerve agents was evaluated by acetylcholinesterase back-titration assay. Partially purified human liver PROL hydrolyzed DFP and various nerve agents, which was abolished by specific PROL inhibitor showing the specificity of hydrolysis. Both the recombinant human skin and kidney PROL expressed in T. ni larvae showed ∼99% purity and efficiently hydrolyzed DFP and sarin. In contrast to human liver PROL, both skin and kidney PROL showed significantly low hydrolyzing potential against nerve agents soman, tabun and VX. In conclusion, compared to human liver PROL, recombinant human skin and kidney PROL hydrolyze only DFP and sarin showing the substrate specificity of PROL from various tissue sources.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app