Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Calpain-mediated processing of p53-associated parkin-like cytoplasmic protein (PARC) affects chemosensitivity of human ovarian cancer cells by promoting p53 subcellular trafficking.

Resistance to cisplatin (CDDP)-based therapy is a major hurdle to the successful treatment of human ovarian cancer (OVCA), and the chemoresistant phenotype in OVCA cells is associated with Akt-attenuated p53-mediated apoptosis. Pro-apoptotic functions of p53 involve both transcription-dependent and -independent signaling pathways, and dysfunctional localization and/or inactivation of p53 contribute to the development of chemoresistance. PARC is a cytoplasmic protein regulating p53 subcellular localization and subsequent function. Little is known about the molecular mechanisms regulating PARC. Although PARC contains putative caspase-3 cleavage sites, and CDDP is known to induce the activation of caspases and calpains and induce proteasomal degradation of anti-apoptotic proteins, if and how PARC is regulated by CDDP in OVCA are unknown. Here, we present evidence that CDDP promotes calpain-mediated PARC down-regulation, mitochondrial and nuclear p53 accumulation, and apoptosis in chemosensitive but not resistant OVCA cells. Inhibition of Akt is required to sensitize chemoresistant cells to CDDP in a p53-dependent manner, an effect enhanced by PARC down-regulation. CDDP-induced PARC down-regulation is reversible by inhibition of calpain but not of caspases or the 26 S proteasome. Furthermore, in vitro experiments confirm the ability of calpain in mediating Ca(2+)-dependent PARC down-regulation. The role of Ca(2+) in PARC down-regulation was further confirmed as ionomycin-induced PARC down-regulation in both chemosensitive and chemoresistant ovarian cancer cells. The data presented here implicate the regulation of p53 subcellular localization and apoptosis by PARC as a contributing factor in CDDP resistance in OVCA cells and Ca(2+)/calpain in PARC post-translational processing and chemosensitivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app