Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Current knowledge on isobutanol production with Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum.

Bioengineered Bugs 2011 November
Due to steadily rising crude oil prices great efforts have been made to develop designer bugs for the fermentative production of higher alcohols, such as 2-methyl-1-butanol, 3-methyl-1-butanol and 2-Methyl-1-propanol (isobutanol), which all possess quality characteristics comparable to traditional oil based fuels. The common metabolic engineering approach uses the last two steps of the Ehrlich pathway, catalyzed by 2-ketoacid decarboxylase and an alcohol dehydrogenase converting the branched chain 2-ketoacids of L-isoleucine, L-leucine, and L-valine into the respective alcohols. This strategy was successfully used to engineer well suited and industrially employed bacteria, such as Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum for the production of higher alcohols. Among these alcohols, isobutanol is currently the most promising one regarding final titer and yield. This article summarizes the current knowledge and achievements on isobutanol production with E. coli, B. subtilis and C. glutamicum regarding the metabolic engineering approaches and process conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app