Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Correlation of a feline muscle mass score with body composition determined by dual-energy X-ray absorptiometry.

Body condition scoring (BCS) systems primarily assess body fat. Both overweight and underweight animals may have loss of lean tissue that may not be noted using standard BCS systems. Catabolism of lean tissue can occur rapidly, may account for a disproportionate amount of body mass loss in sick cats and can have deleterious consequences for outcome. Therefore, along with evaluation of body fat, patients should undergo evaluation of muscle mass. The aims of the present study were first to evaluate the repeatability and reproducibility of a 4-point feline muscle mass scoring (MMS) system and second to assess the convergent validity of MMS by dual-energy X-ray absorptiometry (DXA). MMS was as follows: 3, normal muscle mass; 2, slight wasting; 1, moderate wasting; 0, severe wasting. For the first aim, forty-four cats were selected for evaluation based on age and BCS, and for the second aim, thirty-three cats were selected based on age, BCS and MMS. Cats were scored by ten different evaluators on three separate occasions. Body composition was determined by DXA. Inter- and intra-rater agreement were assessed using kappa analysis. Correlation between MMS and BCS, age, percentage lean body mass and lean body mass (LBM) was determined using Spearman's rank-order correlation. The MMS showed moderate inter-rater agreement in cats that scored normal or severely wasted (κ = 0.48-0.53). Intra-rater agreement was substantial (κ = 0.71-0.73). The MMS was significantly correlated with BCS (r 0.76, P < 0.0001), age (r - 0.75, P < 0.0001), LBM (g) (r 0.62, P < 0.0001) and percentage LBM (r - 0.49, P < 0.0035). Additional investigation is needed to determine whether the MMS can be refined and to assess its clinical applicability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app