Add like
Add dislike
Add to saved papers

Pharmacokinetics and pharmacodynamics of high-dose human regular U-500 insulin versus human regular U-100 insulin in healthy obese subjects.

Diabetes Care 2011 December
OBJECTIVE: Human regular U-500 (U-500R) insulin (500 units/mL) is increasingly being used clinically, yet its pharmacokinetics (PK) and pharmacodynamics (PD) have not been well studied. Therefore, we compared PK and PD of clinically relevant doses of U-500R with the same doses of human regular U-100 (U-100R) insulin (100 units/mL).

RESEARCH DESIGN AND METHODS: This was a single-site, randomized, double-blind, crossover euglycemic clamp study. Single subcutaneous injections of 50- and 100-unit doses of U-500R and U-100R were administered to 24 healthy obese subjects.

RESULTS: Both overall insulin exposure (area under the serum insulin concentration versus time curve from zero to return to baseline [AUC(0-)(t)(')]) and overall effect (total glucose infused during a clamp) were similar between formulations at both 50- and 100-unit doses (90% [CI] of ratios contained within [0.80, 1.25]). However, peak concentration and effect were significantly lower for U-500R at both doses (P < 0.05). Both formulations produced relatively long durations of action (18.3 to 21.5 h). Time-to-peak concentration and time to maximum effect were significantly longer for U-500R than U-100R at the 100-unit dose (P < 0.05). Time variables reflective of duration of action (late tR(max50), tR(last)) were prolonged for U-500R versus U-100R at both doses (P < 0.05).

CONCLUSIONS: Overall exposure to and action of U-500R insulin after subcutaneous injection were no different from those of U-100R insulin. For U-500R, peaks of concentration and action profiles were blunted and the effect after the peak was prolonged. These findings may help guide therapy with U-500R insulin for highly insulin-resistant patients with diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app