REVIEW
Add like
Add dislike
Add to saved papers

Earlier recognition of nephrotoxicity using novel biomarkers of acute kidney injury.

Clinical Toxicology 2011 October
CONTEXT: A broad range of drugs and chemicals are capable of evoking acute kidney injury, which is conventionally determined by rising serum creatinine concentrations. However there are important limitations to this approach, and there has been interest in alternative biomarkers that might provide a more sensitive and rapid means of detecting acute kidney injury. Most of the available clinical data have thus far been ascertained in patients requiring critical care or with acute sepsis. However, if a sensitive indicator of acute kidney injury were developed, then this could provide a significantly improved means of detecting the effects of acute drug or toxin exposure.

OBJECTIVE: To review the available data concerning potential biomarkers of acute kidney injury and to assess their relative strengths and weaknesses in comparison to existing methods based on serum creatinine concentrations. A large number of possible biomarkers have been proposed. Evidence for individual biomarkers is reviewed with a particular emphasis on those with potential application in clinical toxicology. Where available, comparative data are presented.

METHODS: There were 236 papers identified using Medline, Embase, and Google Scholar databases, of which 52 were considered directly relevant. CREATININE: Creatinine is subject to glomerular filtration and, to a lesser extent tubular secretion. Serum concentrations are an insensitive marker of acute kidney injury, and the speed of an increase from baseline depends on the magnitude of the acute injury and pre-existing kidney functional reserve. A wide range of inter-individual concentrations means that single time-point determinations are difficult to interpret, and acute kidney injury may not manifest as a detectable increase in serum creatinine concentrations until at least 24-48 h after the primary insult. KIDNEY ENZYMES: Enzymes are often localised to specific anatomical locations, and acute injury may cause a detectable increase in urinary activity due to up-regulated activity or leakage due to cell membrane disruption. Key examples include gamma-glutamyl transpeptidase (GGT), glutathione-S-transferase (GST), and N-acetyl-glucosaminidase (NAG), which are found predominantly in the proximal tubule and urinary enzyme activity increases after acute exposure to heavy metals and other nephrotoxins. NEUTROPHIL GELATINASE-ASSOCIATED LIPOCALIN: Neutrophil gelatinase-associated lipocalin (NGAL) is expressed by renal tubular epithelium, and a rise in urinary concentrations may provide an indicator of acute renal injury caused by any one of a broad range of provoking factors that is detectable before a rise in serum creatinine concentrations. CYSTATIN C: Serum and urinary cystatin C concentrations are closely related to kidney function and, for example, in acute tubular necrosis allow better prediction of the need for renal replacement therapy than serum creatinine concentrations. KIDNEY INJURY MOLECULE 1: Kidney injury molecule 1 (KIM-1) is expressed in the proximal tubule in the setting of acute ischaemia. For example, urinary KIM-1 concentrations becomes detectable within 24 h of acute tubular necrosis. Urinary KIM-1 expression may be detected after exposure to a variety of nephrotoxic agents, even when serum creatinine concentrations do not increase, and this has been accepted by regulatory authorities as a sensitive biomarker of acute kidney injury during early drug development.

CONCLUSIONS: Novel biomarkers appear capable of offering a more sensitive means of detecting acute kidney injury than existing approaches. Certain of these allow discrimination between the various mechanisms and anatomical site of acute injury. Ultimately, clinical assessment might incorporate a panel of different biomarkers, each informing on the integrated aspects of glomerular, tubular and interstitial function. Presence of biomarkers may in some cases detect mild or transient renal dysfunction that is presently undetected, and the clinical relevance needs further exploration. Whilst many potentially useful biomarkers have been proposed, comparatively few clinical data exist to support their validity in routine practice. Further prospective clinical studies are required to examine the validity of biomarkers after acute drug or toxin exposure, and to establish whether they might offer improved clinical outcomes in the setting of clinical toxicology.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app