Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

PhoP and OxyR transcriptional regulators contribute to Yersinia pestis virulence and survival within Galleria mellonella.

The virulence of Yersinia pestis KIM6+ was compared with multiple isolates of Yersinia pseudotuberculosis and Yersinia enterocolitica toward larvae of the greater wax moth Galleria mellonella. Although Y. pestis and Y. pseudotuberculosis were able to cause lethal infection in G. mellonella, these species appeared less virulent than the majority of Y. enterocolitica strains tested. Y. pestis survived primarily within hemocytes of G. mellonella, and induced a strong antibacterial peptide response that lasted for at least 3 days in surviving larvae. Immunization with dead bacteria to induce an antibacterial response led to increased survival of the larvae following infection. Mutant strains lacking the either phoP or oxyR, which were less resistant to antibacterial peptides and hydrogen peroxide respectively, were attenuated and restoration of the wild-type genes on plasmids restored virulence. Our results indicate that the Y. pseudotuberculosis-Y. pestis lineage is not as virulent toward G. mellonella as are the majority of Y. enterocolitica isolates. Further, we have shown that G. mellonella is a useful infection model for analyzing Y. pestis host-pathogen interactions, and antibacterial peptide resistance mediated by phoP and reactive oxygen defense mediated by oxyR are important for Y. pestis infection of this insect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app