Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Noxa induces apoptosis in oncogene-expressing cells through catch-and-release mechanism operating between Puma and Mcl-1.

Tumor suppressor p53 induces apoptosis by transcriptional induction of Noxa and Puma, which encode the proapoptotic BH3-only member of the Bcl-2 family proteins. In the p53-mediated tumor surveillance system, p53 induces apoptosis or replicative senescence in oncogene-expressing cells, resulting in elimination of such cells. In this context, we previously found that Noxa and Puma synergistically induce apoptosis. Here, we found the adenovirus oncogene E1A to induce p53-dependently expression of Puma, but not Noxa. The induced Puma associates with antiapoptotic Bcl-2 protein Mcl-1, accompanied by accumulated Mcl-1 protein on mitochondria. Moreover, E1A also reduces expression of the antiapoptotic Bcl-2 protein Bcl-X(L). In contrast, the DNA-damaging agent adriamycin induces Noxa expression in E1A-expressing cells. Interestingly, Mcl-1 knockdown itself induced apoptosis in E1A-expressing MEFs. Furthermore, Noxa displaced Puma's association with Mcl-1, accompanied by Mcl-1 degradation and apoptosis induction by activating mitochondrial apoptotic executers Bax and Bak. These results suggest that p53-induced apoptosis in oncogene-expressing cells is regulated by differential induction and sequential activation of Noxa and Puma. Accumulated Puma by oncogene enhances susceptibility to apoptosis through "catch" in mitochondria by Mcl-1. Subsequently, in response to DNA-damage, Noxa efficiently induces apoptosis by "release" of Puma from Mcl-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app