Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cubane-type Fe4S4 clusters with chiral thiolate ligation: formation by ligand substitution, detection of intermediates by 1H NMR, and solid state structures including spontaneous resolution upon crystallization.

Inorganic Chemistry 2011 November 8
Cubane-type clusters [Fe(4)S(4)(SR*)(4)](2-) containing chiral thiolate ligands with R* = CH(Me)Ph (1), CH(2)CH(Me)Et (2), and CH(2)CH(OH)CH(2)OH (3) have been prepared by ligand substitution in the reaction systems [Fe(4)S(4)(SEt)(4)]/R*SH (1-3, acetonitrile) and [Fe(4)S(4)Cl(4)](2-)/NaSR*(3, Me(2)SO). Reactions with successive equivalents of thiol or thiolate generate the species [Fe(4)S(4)L(4-n)(SR*)(n)](2-) (L = SEt, Cl) with n = 1-4. Clusters 1 and 2 were prepared with racemic thiols leading to the possible formation of one enantiomeric pair (n = 1) and seven diastereomers and their enantiomers (n = 2-4). Reactions were monitored by isotropically shifted (1)H NMR spectra in acetonitrile or Me(2)SO. In systems affording 1 and 2 as final products, individual mixed-ligand species could not be detected. However, crystallization of (Et(4)N)(2)[1] afforded 1-[SS(RS)(RS)] in which two sites are disordered because of occupancy of R and S ligands. Similarly, (Et(4)N)(2)[2] led to 2-[SSSS], a consequence of spontaneous resolution upon crystallization. The clusters 3-[RRRR] and 3-[SSSS] were obtained from enantiomerically pure thiols. Successive reactions lead to detection of species with n = 1-4 by appearance of four pairs of diastereotopic SCH(2) signals in both acetonitrile and Me(2)SO reaction systems. Identical spectra were obtained with racemic, R-(-), and S-(+) thiols, indicating that ligand-ligand interactions are too weak to allow detection of diastereomers (e.g., [SSSS] vs [SSRR]). The stability of 3 in Me(2)SO/H(2)O media is described.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app