Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The roles of connective tissue growth factor and integrin-linked kinase in high glucose-induced phenotypic alterations of podocytes.

Emerging evidence has suggested that podocytes undergo epithelial-mesenchymal transition (EMT) in diabetic nephropathy (DN). Connective tissue growth factor (CTGF) and integrin-linked kinase (ILK) are involved in the progression of DN. However, the underlying mechanisms of EMT are not well understood. The study aimed to investigate the roles of CTGF and ILK in high glucose-induced phenotypic alterations of podocytes and determine whether ILK signaling is downstream of CTGF. The epithelial marker of nephrin and the mesenchymal marker of desmin were investigated by real-time RT-PCR and Western blotting. The results demonstrated that podocytes displayed a spreading, arborized morphology in normal glucose, whereas they had a cobblestone morphology in high glucose conditions, accompanied by decreased nephrin expression and increased desmin expression, suggesting podocytes underwent EMT. In response to high glucose, CTGF and ILK expression in podocytes were increased in a dose- and time-dependent manner, whereas the increase did not occur in the osmotic control. Furthermore, the inhibition of CTGF with anti-CTGF antibody prevented the phenotypic transition, as demonstrated by the preservation of epithelial morphology, the suppression of high glucose-induced desmin overexpression and the restoration of nephrin. Of note, the upregulation of ILK induced by high glucose was partially blocked by the inhibition of CTGF. In summary, these findings suggested that CTGF and ILK were involved in high glucose-induced phenotypic alterations of podocytes. ILK acted as a downstream kinase of CTGF and high glucose-induced ILK expression might occur through CTGF-dependent and -independent pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app