Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Grape seed procyanidin b2 inhibits human aortic smooth muscle cell proliferation and migration induced by advanced glycation end products.

Advanced glycation end product (AGE)-induced vascular smooth muscle cell (VSMC) proliferation is vital to the progression of diabetic vasculopathy. A grape seed procyanidin extract has been reported to possess anti-oxidative and anti-inflammatory properties and to display a significant cardiovascular protective effect, but little is know about the underlying mechanism. The objective of this present study was to determine whether GSPB2 (grape seed procyanidin B2), which is a dimeric procyanidin and more biologically active, could inhibit AGE-induced VSMC proliferation by affecting the production of ubiquitin COOH-terminal hydrolase 1 (UCH-L1), the degradation of IκB-α and nuclear translocation of NF-κB in human aortic smooth muscle cells (HASMCs). Our data show that GSPB2 preincubation markedly inhibited AGE-induced proliferation and migration of HASMCs in a dose-dependent manner and upregulated the protein level of UCH-L1. Further studies revealed that the GSPB2 pretreatment markedly attenuated the degradation of IκB-α and nuclear translocation of NF-κB by modulating ubiquitination of IκB-α in AGE-exposed HASMCs. These results collectively suggest that AGE-induced HASMC proliferation and migration was suppressed by GSPB2 through regulating UCH-L1 and ubiquitination of IκB-α. GSPB2 may therefore have therapeutic potential in preventing and treating vascular complications of diabetes mellitus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app