Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of glycogen synthase kinase 3β induces dermal fibrosis by activation of the canonical Wnt pathway.

OBJECTIVE: Glycogen synthase kinase 3β (GSK-3) regulates the phosphorylation and subsequent degradation of β-catenin, thereby preventing aberrant activation of the canonical Wnt pathway. A study was undertaken to define the role of GSK-3 in fibroblast activation and in experimental models of systemic sclerosis (SSc).

METHODS: siRNA and specific inhibitors were used to inhibit GSK-3 in cultured fibroblasts and in mice. Activation of the canonical Wnt signalling was analysed by determining the levels of nuclear β-catenin and by measuring the mRNA levels of the Wnt target gene Axin2. The effects of GSK-3 on the release of collagen were evaluated in human dermal fibroblasts and in the mouse model of bleomycin-induced skin fibrosis in tight-skin-1 (tsk-1) mice.

RESULTS: Targeting GSK-3 potently activated the canonical Wnt pathway in fibroblasts in vitro and in vivo. Inactivation of GSK-3 dose-dependently stimulated the release of collagen from cultured fibroblasts in a β-catenin-dependent manner and further resulted in progressive accumulation of collagen and dermal thickening in mice. Inhibition of GSK-3 aggravated experimental fibrosis in bleomycin-challenged mice and in tsk-1 mice.

CONCLUSION: Inhibition of GSK-3 activates the canonical Wnt pathway in fibroblasts, stimulates the release of collagen from fibroblasts, exacerbates experimental fibrosis and is sufficient to induce fibrosis. GSK-3 is therefore a key regulator of the canonical Wnt signalling in fibroblasts and inhibition of GSK-3 results in fibroblast activation and increased release of collagen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app