Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanisms of TGF-β-induced differentiation in human vascular smooth muscle cells.

BACKGROUND: Transforming growth factor-β (TGF-β) plays an important role in vascular homeostasis through effects on vascular smooth muscle cells (SMC). Fine-tuning of TGF-β signaling occurs at the level of ALK receptors or Smads, and is regulated with cell type specificity.

METHODS: Our goal was to understand TGF-β signaling in regulating SMC differentiation marker expression in human SMC. Activation of Smads was characterized, and loss- and gain-of-function reagents used to define ALK pathways. In addition, Smad-independent mechanisms were determined.

RESULTS: TGF-β type I receptors, ALK1 and ALK5, are expressed in human SMC, and TGF-β1 phosphorylates Smad1/5/8 and Smad2/3 in a time- and dosage-dependent pattern. ALK5 activity, not bone morphogenetic protein type I receptors, is required for Smad phosphorylation. Endoglin, a TGF-β type III receptor, is a TGF-β1 target in SMC, yet endoglin does not modify TGF-β1 responsiveness. ALK5, not ALK1, is required for TGF-β1-induction of SMC differentiation markers, and ALK5 signals through an ALK5/Smad3- and MAP kinase-dependent pathway.

CONCLUSION: The definition of the specific signaling downstream of TGF-β regulating SMC differentiation markers will contribute to a better understanding of vascular disorders involving changes in SMC phenotype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app