Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Early requirement of Rac1 in a mouse model of pancreatic cancer.

Gastroenterology 2011 August
BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease without effective chemopreventive or therapeutic approaches. Although the role of oncogenic Kras in initiating development of PDAC is well established, downstream targets of aberrant Ras signaling are poorly understood. Acinar-ductal metaplasia (ADM) appears to be an important prerequisite for development of pancreatic intraepithelial neoplasia (PanIN), a common precursor to PDAC. RAS-related C3 botulinum substrate 1 (Rac1), which controls actin reorganization, can be activated by Ras, is up-regulated in several human cancers, and is required for cerulein-induced morphologic changes in acini. We investigated effects of loss of Rac1 in Kras-induced pancreatic carcinogenesis in mice.

METHODS: Using a Cre/lox approach, we deleted Rac1 from pancreatic progenitor cells in different mouse models of PDAC and in mice with cerulein-induced acute pancreatitis. Acinar epithelial explants of mutant mice were used to investigate the role of Rac1 in vitro.

RESULTS: Rac1 expression increased in mouse and human pancreatic tumors, particularly in the stroma. Deletion of Rac1 in Kras(G12D)-induced PDAC in mice reduced formation of ADM, PanIN, and tumors and significantly prolonged survival. Pancreatic epithelial metaplasia was accompanied by apical-basolateral redistribution of F-actin, along with basal expression of Rac1. Acinar epithelial explants that lacked Rac1 or that were incubated with inhibitors of actin polymerization had a reduced ability to undergo ADM in 3-dimensional cultures.

CONCLUSIONS: In mice, Rac1 is required for early metaplastic changes and neoplasia-associated actin rearrangements in development of pancreatic cancer. Rac1 might be developed as a diagnostic marker or therapeutic target for PDAC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app