Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification and cross-species transferability of 112 novel unigene-derived microsatellite markers in tea (Camellia sinensis).

PREMISE OF THE STUDY: Tea Unigene-derived MicroSatellite (TUGMS) markers were identified from the publicly available EST data in Camellia sinensis for characterization and future genome mapping studies in tea.

METHODS AND RESULTS: One hundred twelve novel TUGMS markers were identified from 4356 unigenes derived by clustering of 12788 random ESTs in C. sinensis. Amplification-based validation of the TUGMS loci proved them to be highly polymorphic [an average (av.) of 5.24 alleles], heterozygous (H(E), av. 0.746; H(o), av. 0.566) and informative (PIC, av. 0.392). TUGMS loci were 100% transferable in cultivated C. assamica and C. assamica subsp. lasiocalyx and highly cross-transferrable to the related species C. japonica, C. rosiflora, and C. sasanqua.

CONCLUSIONS: These 112 novel highly polymorphic TUGMS markers with proven cross-species transferability will facilitate the future genetic diversity and genome mapping studies in tea.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app