Add like
Add dislike
Add to saved papers

53BP1 and MDC1 foci formation in HT-1080 cells for low- and high-LET microbeam irradiations.

An improved assessment of the biological effects and related risks of low doses of ionizing radiation is currently an important issue in radiation biology. Irradiations using microbeams are particularly well suited for precise and localized dose depositions, whereas recombinant cell lines with fluorescent proteins allow the live observation of radiation-induced foci. Living cells of the fibrosarcoma cell line HT-1080 stably expressing 53BP1 or full-length reconstituted MDC1 fused to Green Fluorescent Protein (GFP) were irradiated with protons and α-particles of linear energy transfers (LETs) of 15 and 75 keV/μm, respectively. Using a microbeam, the irradiations were carried out in line patterns, which facilitated the discrimination between undefined background and radiation-induced foci. As expected, foci formation and respective kinetics from α-particle irradiations with a high LET of 75 keV/μm could be detected in a reliable manner by both fusion proteins, as reported previously. Colocalization of γ-H2AX foci confirmed the DSB nature of the detected foci. As a novel result, the application of protons with low LET of 15 keV/μm generated 53BP1- and MDC1-mediated foci of almost equal size and slightly different kinetics. This new data expands the capability of 53BP1 and wild-type MDC1 on visible foci formation in living cells after irradiation with low-LET particles. Furthermore, the kinetics in HT-1080 cells for α-particle irradiation show a delay of about 20 s for 53BP1 foci detection compared to wild-type MDC1, confirming the hierarchical assembly of both proteins. Preliminary data for proton irradiations are shown and also these indicate a delay for 53BP1 versus MDC1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app