Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Preservations of nephrin and synaptopodin by recombinant hepatocyte growth factor in podocytes for the attenuations of foot process injury and albuminuria in nephritic mice.

Nephrology 2011 March
AIM: Podocytes provide a slit diaphragm to inhibit proteinuria, and nephrin between podocytes functions as a barrier during glomerular filtration. Hepatocyte growth factor (HGF) can improve proteinuria in rodents with various renal injuries, but little is known about the role of HGF in podocyte-based events during glomerulonephritis. In the present study, we examined whether and how nephrin expression is sustained by podocytes during the HGF-mediated attenuation of albuminuria.

METHODS: Lipopolysaccharide (LPS)-treated mice were used as an animal model of albuminuria. We evaluated the effect of HGF on slit proteins using immunohistochemistry, western blotting and real-time polymerase chain reaction.

RESULTS: Albuminuria occurred 36 h after LPS treatment in mice. This albuminuria did not involve podocyte loss, but was associated with a decrease in nephrin and its key anchor, synaptopodin. In these processes, c-Met tyrosine phosphorylation, which represented HGF signal activation, occurred in glomerular cells including podocytes. When recombinant HGF was administrated to nephritic mice, c-Met tyrosine phosphorylation became evident in podocytes. The enhancement of the HGF-c-Met signal was associated with increases in nephrin and synaptopodin. An electron microscopic examination revealed that LPS induced the foot process effacement of podocytes, while HGF injections suppressed the foot process injury. Overall, albuminuria was attenuated in the LPS-treated mice after HGF administration.

CONCLUSION: HGF protects podocytes from a loss of nephrin, at least in part, through maintaining synaptopodin. As a result, HGF was shown to sustain foot process structure, and albuminuria was attenuated under inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app