Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Gait kinematics and passive knee joint range of motion in children with hypermobility syndrome.

Gait & Posture 2011 March
Hypermobility syndrome (HMS) is characterised by generalised joint laxity and musculoskeletal complaints. Gait abnormalities have been reported in children with HMS but have not been empirically investigated. The extent of passive knee joint range of motion (ROM) has also not been well reported in children with HMS. This study evaluated gait kinematics and passive knee joint ROM in children diagnosed with HMS and healthy controls. Thirty-seven healthy children (mean age±SD=11.5±2.6 years) and 29 children with HMS (mean age±SD=11.9±1.8 years) participated. Sagittal knee motion and gait speed were evaluated using a VICON 3D motion analysis system. Passive knee ROM was measured with a manual goniometer. Independent t-tests compared the values of sagittal knee motion and gait speed between the two groups. Mann-Whitney U tests compared passive knee ROM between groups. Passive ROM (extension and flexion) was significantly higher (both p<0.001) in children with HMS than the healthy controls. Peak knee flexion (during loading response and swing phase) during walking was significantly lower (both p<0.001) in children with HMS. Knee extension in mid stance during walking was significantly increased (p<0.001) in children with HMS. However, gait speed was not statistically (p=0.496) different between the two groups. Children with HMS had higher passive knee ROM than healthy children and also demonstrated abnormal knee motion during gait. Gait re-education and joint stability exercise programmes may be of value to children with HMS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app