Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of AMPK-associated autophagy enhances caffeic acid phenethyl ester-induced cell death in C6 glioma cells.

Planta Medica 2011 June
An increasing number of studies show that AMP-activated protein kinase (AMPK) activation can inhibit apoptosis. To clarify the antitumor mechanism of caffeic acid phenethyl ester (CAPE) and achieve increased therapeutic efficiency, we investigated the potential roles of AMPK and autophagy in CAPE treatment against C6 glioma cells. The roles of AMPK and autophagy inhibition in CAPE's cytotoxic action were investigated. Phosphorylation of AMPK and mitogen-activated protein kinases (MAPKs) were observed in tumor cells following CAPE treatment. A combination of CAPE and the AMPK inhibitor, compound C, resulted in augmented cell death. Similar effects of compound C were observed in response to changes in the mitochondrial membrane potential ( ΔΨ(m)). Small interfering RNA-mediated AMPK downregulation increased CAPE-induced cell death. The results suggest that AMPK activation plays a role in diminishing apoptosis. CAPE treatment induced an increase in LC3 conversion as represented by the LC3-II/LC3-I ratio. Enlarged lysosomes and autophagosomes were present according to electron microscopy. The autophagy inhibitor, 3-MA, caused increased CAPE cytotoxicity, which suggests that autophagy induction protected glioma cells from CAPE. The combination of CAPE with autophagy and AMPK inhibitors markedly enhanced the cytotoxicity toward C6 glioma cells. Accordingly, CAPE-triggered activation of AMPK and the autophagic response protected tumor cells from apoptotic death. This provides new insights for combined therapy to enhance the therapeutic potential of cancer treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app