Add like
Add dislike
Add to saved papers

Disk injury in rats produces persistent increases in pain-related neuropeptides in dorsal root ganglia and spinal cord glia but only transient increases in inflammatory mediators: pathomechanism of chronic diskogenic low back pain.

Spine 2011 December 16
STUDY DESIGN: Immunohistological analysis in an injured intervertebral disk (IVD) model.

OBJECTIVE: To elucidate and compare in rats the behavior of the sensory nervous system and inflammatory mediators in experimentally injured IVDs.

SUMMARY OF BACKGROUND DATA: Multiple human and animal studies have verified the presence of sensory nerve fibers in IVDs or investigated the behavior of inflammatory mediators in injured IVDs, but no in vivo study to date has examined the relationship between the 2.

METHODS: Eight-week-old female rats were used. In the disk-injured group, L5/L6 disks were injured with a 24-gauge needle; simultaneously, the neurotracer Fluoro-gold was injected into the L5/L6 IVD. The L5/L6 IVD dorsal root ganglia (DRGs) from the L1 to L6 levels, and the spinal cord was resected at several time points after surgery. Nerve growth factor, tumor necrosis factor (TNF)-α and interleukin (IL)-6 production in the IVDs were quantified using enzyme-linked immunosorbent assay. DRGs were immunostained for calcitonin gene-related peptide, and spinal cord sections were immunostained for ionized calcium-binding adaptor molecule-1 and glial fibrillary acidic protein.

RESULTS: Nerve growth factor, and TNF-α levels (through 1 week) and IL-6 levels (through 4 days) were significantly higher in the disk-injured group than in the noninjured group (P < 0.05). However, starting at 2 weeks (nerve growth factor and TNF-α) or 1 week (IL-6), the differences in inflammatory mediator levels between the 2 groups no longer were significant. In contrast, the percentage of calcitonin gene-related peptide-immunoreactive neurons among Fluoro-gold-labeled DRG neurons, and the numbers of ionized calcium-binding adaptor molecule-1-immunoreactive microglia and glial fibrillary acidic protein-immunoreactive astrocytes in the spinal dorsal horn remained significantly higher in the injured group than in the noninjured group at all-time points (P < 0.05).

CONCLUSION: Disk injury in rats produces persistent increases in neuropeptides in DRGs and glia in the spinal cord, but only transient increases in inflammatory mediators in IVDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app