Development of stealth liposome coencapsulating doxorubicin and fluoxetine

Jasmine Chiat-Ling Ong, Feng Sun, Eli Chan
Journal of Liposome Research 2011, 21 (4): 261-71
Stealth liposomes form an important subset of liposomes, demonstrating prolonged circulation half-life and improved safety in vivo. Caelyx® (liposomal doxorubicin; Merck & Co., Whitehouse Station, New Jersey, USA) is a successful example of the application of stealth liposomes in anticancer treatment. However, multidrug resistance (MDR) to chemotherapy still remains a critical problem, accounting for more than 90% of treatment failure in patients with advanced cancer. To circumvent MDR, fluoxetine and doxorubicin were tested in combination for synergistic activity in MCF-7 (human breast carcinoma) and MCF-7/adr (doxorubicin-resistant human breast carcinoma) cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell-viability assay. Coencapsulation of doxorubicin and fluoxetine, using an ammonium sulphate gradient, was investigated, and a factorial experiment was designed to determine the optimal drug-to-lipid (D/L) ratio for coencapsulation. Drug release from Dox-Flu-SL (stealth liposome coencapsulating doxorubicin and fluoxetine) under both in vitro and in vivo conditions was determined. In MCF-7 cells, synergism was demonstrated at specific doxorubicin:fluoxetine ratios of between 0.09 and 0.5 (molar ratio), while MCF/7/adr cells demonstrated synergism across all drug ratios. Coencapsulation of doxorubicin and fluoxetine (Dox-Flu-SL) was successfully achieved (optimal doxorubicin:fluoxetine:lipid molar ratio of 0.02:0.05:1), obtaining a mean concentration of 257 ± 12.1 and 513 ± 29.3 μM for doxorubicin and fluoxetine, respectively. Most important, Dox-Flu-SL demonstrated drug release in synergistic ratios in cell-culture media, accounting for the improved cytotoxicity of Dox-Flu-SL over liposomal doxorubicin (LD) in both MCF-7 and MCF-7/adr cells. Pharmacokinetic studies also revealed that Dox-Flu-SL effectively prolonged drug-circulation time and reduced tissue biodistribution. Dox-Flu-SL presents a promising anticancer formulation, capable of effective reversal of drug resistance, and may constitute a novel approach for cancer therapy.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"