Add like
Add dislike
Add to saved papers

Microdosimetry for nanosecond pulsed electric field applications: a parametric study for a single cell.

A microdosimetric study of nanosecond pulsed electric fields, including dielectric dispersivity of cell compartments, is proposed in our paper. A quasi-static solution based on the Laplace equation was adapted to wideband signals and used to address the problem of electric field estimation at cellular level. The electric solution was coupled with an asymptotic electroporation model able to predict membrane pore density. An initial result of our paper is the relevance of the dielectric dispersivity, providing evidence that both the transmembrane potential and the pore density are strongly influenced by the choice of modeling used. We note the crucial role played by the dielectric properties of the membrane that can greatly impact on the poration of the cell. This can partly explain the selective action reported on cancerous cells in mixed populations, if one considers that tumor cells may present different dielectric responses. Moreover, these kinds of studies can be useful to determine the appropriate setting of nsPEF generators as well as for the design and optimization of new-generation devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app