Add like
Add dislike
Add to saved papers

Phospho-ΔNp63α/Rpn13-dependent regulation of LKB1 degradation modulates autophagy in cancer cells.

Aging 2010 December
Oxidative stress was shown to promote the translocation of Ataxia-telangiectasia mutated (ATM) to cytoplasm and trigger the LKB1-AMPK-tuberin pathway leading to a down-regulation of mTOR and subsequently inducing the programmed cell death II (autophagy). Cisplatin was previously found to induce the ATM-dependent phosphorylation of ΔNp63α in squamous cell carcinoma (SCC) cells. In this study, phosphorylated (p)-ΔNp63α was shown to bind the ATM promoter, to increase the ATM promoter activity and to enhance the ATM cytoplasmic accumulation. P-ΔNp63α protein was further shown to interact with the Rpn13 protein leading to a proteasome-dependent degradation of p-ΔNp63α and thereby protecting LKB1 from the degradation. In SCC cells (with an altered ability to support the ATM-dependent ΔNp63α phosphorylation), the non-phosphorylated ΔNp63α protein failed to form protein complexes with the Rpn13 protein and thereby allowing the latter to bind and target LKB1 into a proteasome-dependent degradation pathway thereby modulating a cisplatin-induced autophagy. We thus suggest that SCC cells sensitive to cisplatin-induced cell death are likely to display a greater ratio of p-ΔNp63α/non-phosphorylated ΔNp63α than cells with the innate resistant/impaired response to a cisplatin-induced cell death. Our data also suggest that the choice made by Rpn13 between p-ΔNp63α or LKB1 to be targeted for degradation is critical for cell death decision made by cancer cells in response to chemotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app