Add like
Add dislike
Add to saved papers

Cortactin activation by FVIIa/tissue factor and PAR2 promotes endothelial cell migration.

Cellular migration is a complex process that requires the polymerization of actin filaments to drive cellular extension. Smooth muscle and cancer cell migration has been shown to be affected by coagulation factors, notably the factor VII (FVIIa) and tissue factor (TF) complex. The present studies delineated mediators involved with the process of FVIIa/TF-induced cell migration and utilized a simple, precise, and reproducible, migration assay. Both FVIIa and protease-activated receptor-2 (PAR2)-activating peptide, SLIGRL, increased the migration rate of porcine cerebral microvascular endothelial cells (pCMVECs) overexpressing human TF. Ras homolog gene family member A (RhoA) and cortactin were upregulated during the process; expression of HIF, actin polymerization nuclear diaphanous-related formin-1 and -2 (Dia1, and Dia2) were unaffected. Gene silencing by shRNA to PAR2, RhoA, and cortactin attenuated this gene upregulation and migration induced by FVIIa/TF. Utilizing immunocellular localization, we demonstrate that during FVIIa/TF and PAR2 activation, cortactin molecules translocate from the cytoplasm to the cell periphery and assist in lamellipodia formation of pCMVECs. Overall, we demonstrate a novel regulation and role for cortactin in FVIIa/TF-mediated endothelial cell migration that occurs through a PAR2 and RhoA dependent mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app