Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Generation of pig iPS cells: a model for cell therapy.

Reprogramming of pig somatic cells to induced pluripotent stem cells provides a tremendous advance in the field of regenerative medicine since the pig represents an ideal large animal model for the preclinical testing of emerging cell therapies. However, the current generation of pig-induced pluripotent stem cells (piPSCs) require the use of time-consuming and laborious retroviral or lentiviral transduction approaches, in order to ectopically express the pluripotency-associated transcription factors Oct4, Sox2, Klf4 and c-Myc, in the presence of feeder cells. Here, we describe a simple method to produce piPSC with a single transfection of a CAG-driven polycistronic plasmid expressing Oct4, Sox2, Klf4, c-Myc and a green fluorescent protein (GFP) reporter gene, in gelatine-coated plates, with or without feeder cells. In our system, the derivation of piPSCs from adult pig ear fibroblasts on a gelatine coating showed a higher efficiency and rate of reprogramming when compared with three consecutive retroviral transductions of a similar polycistronic construct. Our piPSCs expressed the classical embryonic stem cell markers, exhibit a stable karyotype and formed teratomas. Moreover, we also developed a simple method to generate in vitro spontaneous beating cardiomiocyte-like cells from piPSCs. Overall, our preliminary results set the bases for the massive production of xeno-free and integration-free piPSCs and provide a powerful tool for the preclinical application of iPSC technology in a large animal setting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app