Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Farnesoid X receptor activation improves erectile function in animal models of metabolic syndrome and diabetes.

INTRODUCTION: The farnesoid X receptor (FXR) is critically involved in the regulation of the hepato-biliary system. Recent data suggest a role for FXR in modulating other metabolic pathways and vascular function.

AIM: To investigate whether long-term administration of the selective FXR agonist INT-747 ameliorates erectile function, we tested it in two animal models of metabolic derangements: a rabbit model of high-fat diet (HFD)-induced metabolic syndrome (MetS) and a rat model of streptozotocin (STZ)-induced type 1 diabetes.

METHODS: HFD rabbit or STZ rats with or without chronic INT-747 dosing (10 mg/kg/day for 12 weeks). INT-747 addition to rabbit penile smooth muscle cells (rpSMCs).

MAIN OUTCOME MEASURE: Effects of INT-747 on metabolic features and erectile function in animal models and clarification of mechanism of action in isolated cells.

RESULTS: INT-747 dosing normalized visceral adiposity and glucose intolerance in HFD rabbits. INT-747 increased penile FXR expression and partially restored endothelial nitric oxide synthase and dimethylarginine dimethylaminohydrolase 1 expression as well as impaired nitric oxide (NO)-dependent relaxation (improved responsiveness to acetylcholine and electrical field stimulation). INT-747 was also effective in regulating NO downstream events, as shown by increased sodium nitroprusside-induced relaxation. Because phosphodiesterase type 5 and protein kinase G (PKG) were unaltered by INT-747, we analyzed the calcium-sensitizing RhoA/ROCK pathway. HFD increased, and INT-747 normalized, RhoA membrane translocation/activation. RhoA/ROCK signaling inhibition by INT-747 was confirmed in rpSMCs by confocal microscopy, MYPT1-phosphorylation, cytoskeleton remodeling, cell migration, and smooth muscle-related genes expression. In STZ rats, FXR penile expression was not altered but was significantly upregulated by INT-747 dosing. In this model, INT-747 improved penile erection induced by electrical stimulation of cavernous nerve and hypersensitivity to intracavernous injection of a ROCK-inhibitor, Y-27632, without improving hyperglycemia.

CONCLUSION: In HFD rabbits, INT-747 dosing improved glucose sensitivity and MetS-associated erectile dysfunction, via upregulation of NO transmission and inhibition of RhoA/ROCK pathway. In STZ rats, INT-747 restored in vivo penile erection and sensitivity to ROCK inhibition, independently of effects on glycemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app