Add like
Add dislike
Add to saved papers

Control of cell function on a phospholipid polymer having phenylboronic acid moiety.

We synthesized a water-insoluble phospholipid polymer bearing a phenylboronic acid moiety (PMBV), which induces cell adhesion through a specific interaction with the glycoprotein, fibronectin. Surface plasmon resonance analysis revealed that fibronectin was adsorbed on the PMBV surface. When fibroblasts were cultured on the PMBV surface, the cells adhered and proliferated normally while showing a spherical morphology. In addition, the adherent cells were able to detach after the addition of sugar molecules, which bound to phenylboronic acid through an exchange reaction. The cell cycle of adherent cells was evaluated with the embedded HeLa-Fucci cells by using a fluorescent ubiquitination-based cell cycle indicator. The cell-cycle analysis by fluorescence microscopy indicated that the adherent HeLa-Fucci cells tended to converge to the G1 phase. The differentiation of mesenchymal stem cells to chondrocytes was accelerated on PMBV in the presence of bone morphogenetic protein-2. We concluded that PMBV is a useful surface in experiments for assessing cellular function and differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app