Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of saddle height, pedaling cadence, and workload on joint kinetics and kinematics during cycling.

CONTEXT: It is not clear how noncyclists control joint power and kinematics in different mechanical setups (saddle height, workload, and pedaling cadence). Joint mechanical work contribution and kinematics analysis could improve our comprehension of the coordinative pattern of noncyclists and provide evidence for bicycle setup to prevent injury.

OBJECTIVE: To compare joint mechanical work distribution and kinematics at different saddle heights, workloads, and pedaling cadences.

DESIGN: Quantitative experimental research based on repeated measures.

SETTING: Research laboratory.

PATIENTS: 9 healthy male participants 22 to 36 years old without competitive cycling experience.

INTERVENTION: Cycling on an ergometer in the following setups: 3 saddle heights (reference, 100% of trochanteric height; high, +3 cm; and low, -3 cm), 2 pedaling cadences (40 and 70 rpm), and 3 workloads (0, 5, and 10 N of braking force).

MAIN OUTCOME MEASURES: Joint kinematics, joint mechanical work, and mechanical work contribution of the joints.

RESULTS: There was an increased contribution of the ankle joint (P=.04) to the total mechanical work with increasing saddle height (from low to high) and pedaling cadence (from 40 to 70 rpm, P<.01). Knee work contribution increased when saddle height was changed from high to low (P<.01). Ankle-, knee-, and hip-joint kinematics were affected by saddle height changes (P<.01).

CONCLUSIONS: At the high saddle position it could be inferred that the ankle joint compensated for the reduced knee-joint work contribution, which was probably effective for minimizing soft-tissue damage in the knee joint (eg, anterior cruciate ligament and patellofemoral cartilage). The increase in ankle work contribution and changes in joint kinematics associated with changes in pedaling cadence have been suggested to indicate poor pedaling-movement skill.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app