Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Combined photoacoustic and oblique-incidence diffuse reflectance system for quantitative photoacoustic imaging in turbid media.

While photoacoustic imaging is capable of producing high-resolution biomedical images with optical absorption contrast, optical property quantification has thus far remained challenging. One reason for this is that laser-induced photoacoustic signal amplitudes are proportional to not only the local optical absorption coefficient, but also the local laser fluence in the tissue. Unfortunately, local laser fluence is often unknown, but could possibly be estimated if local bulk tissue optical properties were known. One method to estimate tissue optical properties is a technique known as oblique incidence diffuse reflectance (OIR). We report on an integrated OIR and photoacoustic imaging system and demonstrate, using phantom experiments, improved ability to quantitatively estimate optical properties of a turbid medium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app