Add like
Add dislike
Add to saved papers

Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation.

New Phytologist 2010 December
The flavonol branch of flavonoid biosynthesis is under transcriptional control of the R2R3-MYBs production of flavonol glycoside1 (PFG1/MYB12, PFG2/MYB11 and PFG3/MYB111) in Arabidopsis thaliana. Here, we investigated the influence of specific PFG transcription factors on flavonol distribution in various organs. A combination of genetic and metabolite analysis was used to identify transcription factor gene-metabolite correlations of the flavonol metabolic pathway. Flavonol glycoside accumulation patterns have been analysed in wild-type and multiple R2R3-MYB PFG mutants in an organ- and development-dependent manner using high-performance thin-layer chromatography, supplemented with liquid chromatography-mass spectroscopy metabolite profiling. Our results clearly demonstrate a differential influence of MYB11, MYB12 and MYB111 on the spatial accumulation of specific flavonol derivatives in leaves, stems, inflorescences, siliques and roots. In addition, MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation was observed in pollen grains and siliques/seeds. The highly complex tissue- and developmental-specific regulation of flavonol biosynthesis in A. thaliana is orchestrated by at least four PFG transcription factors, differentially influencing the spatial accumulation of specific flavonol derivatives. We present evidence that a separate flavonol control mechanism might be at play in pollen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app