Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo.

UNLABELLED: (89)Zr (half-life, 78.41 h) is a positron-emitting radionuclide that displays excellent potential for use in the design and synthesis of radioimmunoconjugates for immunoPET. In the current study, we report the preparation of (89)Zr-desferrioxamine B (DFO)-J591, a novel (89)Zr-labeled monoclonal antibody (mAb) construct for targeted immunoPET and quantification of prostate-specific membrane antigen (PSMA) expression in vivo.

METHODS: The in vivo behavior of (89)Zr-chloride, (89)Zr-oxalate, and (89)Zr-DFO was studied using PET. High-level computational studies using density functional theory calculations have been used to investigate the electronic structure of (89)Zr-DFO and probe the nature of the complex in aqueous conditions. (89)Zr-DFO-J591 was characterized both in vitro and in vivo. ImmunoPET in male athymic nu/nu mice bearing subcutaneous LNCaP (PSMA-positive) or PC-3 (PSMA-negative) tumors was conducted. The change in (89)Zr-DFO-J591 tissue uptake in response to high- and low-specific-activity formulations in the 2 tumor models was measured using acute biodistribution studies and immunoPET.

RESULTS: The basic characterization of 3 important reagents-(89)Zr-chloride, (89)Zr-oxalate, and the complex (89)Zr-DFO-demonstrated that the nature of the (89)Zr species dramatically affects the biodistribution and pharmacokinetics. Density functional theory calculations provide a rationale for the observed high in vivo stability of (89)Zr-DFO-labeled mAbs and suggest that in aqueous conditions, (89)Zr-DFO forms a thermodynamically stable, 8-coordinate complex by coordination of 2 water molecules. (89)Zr-DFO-J591 was produced in high radiochemical yield (>77%) and purity (>99%), with a specific activity of 181.7 +/- 1.1 MBq/mg (4.91 +/- 0.03 mCi/mg). In vitro assays demonstrated that (89)Zr-DFO-J591 had an initial immunoreactive fraction of 0.95 +/- 0.03 and remained active for up to 7 d. In vivo biodistribution experiments revealed high, target-specific uptake of (89)Zr-DFO-J591 in LNCaP tumors after 24, 48, 96, and 144 h (34.4 +/- 3.2 percentage injected dose per gram [%ID/g], 38.0 +/- 6.2 %ID/g, 40.4 +/- 4.8 %ID/g, and 45.8 +/- 3.2 %ID/g, respectively). ImmunoPET studies also showed that (89)Zr-DFO-J591 provides excellent image contrast, with tumor-to-muscle ratios greater than 20, for the delineation of LNCaP xenografts between 48 and 144 h after administration.

CONCLUSION: These studies demonstrate that (89)Zr-DFO-labeled mAbs show exceptional promise as radiotracers for immunoPET of human cancers. (89)Zr-DFO-J591 displays high tumor-to-background tissue contrast in immunoPET and can be used to delineate and quantify PSMA-positive prostate tumors in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app